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The dynamical response of the Abrikosov vortex lattice in the presence of an oscillating driving field is
calculated by constructing an analytical solution of the time-dependent Ginzburg-Landau equation. The solu-
tion is steady state, and work done by the input signal is dissipated through vortex cores, mainly by scattering
with phonons. The solution shows nonlinear response; the existence of well-defined parameters to control
nonlinear effects is important for any practical application in electronics and a normalized distance from the
normal-superconducting phase-transition boundary is found to be such a parameter to which the response is
sensitive. Favorable comparison with NbN experimental data in the optical region is made, where the effect is
in the linear regime. Predictions are put forward regarding the suppression of heating and also the lattice
configuration at high frequency.
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I. INTRODUCTION

Superconducting films are candidate substances for the
improvement of electronics technology in a myriad of appli-
cations. While the low resistance is very attractive in this
regard, it has proved difficult to control the nonlinear behav-
ior of such materials in response to electromagnetic field.1

When a magnetic field is strong enough to penetrate into a
superconductor, it does so in the form of quantized magnetic
flux tubes. The resulting vortex matter is a mixed state with
both superconducting phase and normal-phase vortex cores.
Vortices are surrounded by a supercurrent and can be forced
into motion by the current resulting from an applied electric
field.

As a topological defect, a vortex is not only stable under
perturbations2,3 but cannot decay. The collection of vortices
in a type-II superconductor forms what is called vortex mat-
ter, and it is this which determines the physical properties of
the system rather then the underlying material properties, in
particular, driving phase transitions.2,4 In the mixed state, a
superconductor is not perfect; it exhibits neither perfect dia-
magnetism nor zero electrical resistance. The transport cur-

rent J generates a Lorentz force F=�0J� ĥ on the vortex
and forces it into motion, dissipating energy.

In reaching thermal equilibrium, energy is transferred via
interactions between phonons and quasiparticle excitations.
Small-scale imperfections such as defects scatter the quasi-
particles, affecting their dynamics. In dirty superconductors,
impurities are plentiful and vortices experience a large fric-
tion. This implies a fast momentum-relaxation process. In
contrast is the clean limit, where impurities are rare and no
such relaxation process is available. It is in this situation of
slow relaxation that the Hall effect appears.

Generally, the H-T phase diagram4 of the vortex matter
has two phases. In the pinned phase vortices are trapped by
an attractive potential due to the presence of large-scale de-
fects, thus resistivity vanishes. This phase contains what are
known as glass states. There is then the unpinned phase in

which vortices can move when forced and so a finite resis-
tivity appears. This phase is also known as the flux-flow
region and can be of two types. One type is a liquid state
where vortices can move independently; the other type is a
solid state in which vortices form a periodic Abrikosov
lattice5 resulting from their long-range interaction. One
model for the transition between the pinned and unpinned
phases appears in Ref. 6.

In the unpinned phase, the system is driven from equilib-
rium and experiences a relaxation process. There are several
ways to describe such a system. A microscopic description7

invoking interactions between a vortex and quasiparticle ex-
citations at the vortex core provides a good understanding of
friction and sports good agreement with experiments in the
sparse-vortex region H�Hc2. There is also a macroscopic
description, the London approach, where vortices are treated
either as interacting pointlike particles or an elastic manifold
subject to a pinning potential, driving force and friction.8,9 In
the small-field region, vortices behave as an array of elastic
strings.

In the dense-vortex region H�Hc1, where the magnetic
field is nearly homogeneous due to overlap between vortices,
Ginzburg-Landau �GL� theory, which describes the system as
a field, provides a more reasonable model. In dynamical
cases, time-dependent GL �TDGL� theory is
appropriate;7,10,11 in GL-type models, additional simplifica-
tion can come from the lowest Landau-level �LLL� approxi-
mation which has proven to be successful in the vicinity of
the superconducting-normal �S-N� phase-transition line H
�Hc2. This has been pursued in the static case4 �without
driving force� and in the dynamic case with a time-
independent transport current.12 It may be noted that in the
glass state, zero resistance within the LLL approximation
cannot be attained.13

Based on TDGL theory, we will study the dynamical re-
sponse of a dense vortex lattice forced into motion by an
alternating current induced by an external electromagnetic
field. Vortices are considered which are free from being
pinned and thermally excited, which in addition to thermal
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noise would produce entanglement and bending. We assume
the vortices can transfer work done by an external field to a
heat bath. Experimentally, a low-temperature superconductor
far away from the clean limit is the best candidate for attain-
ing these conditions. We do not consider thermal fluctuation
effects specific to high-temperature superconductors. In a
dissipative system driven by a single-harmonic electric field
E cos ��, long after its saturation time we can expect the
system to have settled into steady-state behavior, where the
vortices are vibrating periodically with some phase.

The TDGL model in the presence of external electromag-
netic field is analyzed and solved in Sec. II. The dynamical

S-N phase-transition surface T̃c�H ,E ,�� is located in
�T ,H ,E ,�� space. This surface coincides with the mean-
field upper-critical field Hc2�T� in the absence of the applied
field and with the phase-transition surface in the presence of
the constant driving field considered by Hu and Thompson.10

We will provide an analytical formalism for perturbative ex-

pansion in the distance to T̃c, valid in the flux-flow region.
The response of vortex matter forced into motion by the
transport current is studied in Sec. III. The current-density
distribution and the motion of vortices are treated in Sec.
III A. In analyzing the vortex lattice configuration in Sec.
III B, a method is utilized whereby the heat-generation rate is
maximized. Next are discussed power dissipation, generation
of higher harmonics, and the Hall effect. An experimental
comparison is made in Sec. IV with far-infrared �FIR� mea-
surement on NbN. Finally, some conclusions are made in
Sec. V.

II. FLUX-FLOW SOLUTION

Let us consider a dense vortex system prepared by expos-
ing a type-II superconducting material to a constant external
magnetic field H= �0,0 ,−H� with magnitude Hc2�H�Hc1.
We also select the c axis of the superconductor to be in the z
direction. Let the superconductor carry an alternating electric
current along the y direction, generated by an electric field
E���=E cos �� as shown in Fig. 1. Such a system when
disturbed from its equilibrium state will undergo a relaxation
process. For our system, the TDGL equation10,14 is a useful
extension of the equilibrium GL theory.

In the dense-vortex region of the H-T phase diagram, vor-
tices overlap and a homogeneous magnetic field obtains. De-
scribing the response of such a system by a field, the order
parameter 	 in the GL approach, is more suitable than de-
scribing vortices as particlelike flux tubes, as is done in the
London approach.8

A. Time-dependent Ginzburg-Landau model

A strongly type-II superconductor is characterized by its
large penetration depth 
 and small coherence length �, �
�
 /��1. The difference between induced magnetic field
and external magnetic field is H−B=−4M. In the vicinity
of the phase-transition line Hc2�T� vortices overlap signifi-
cantly and H�B making M small. In this case, the magnetic
field may be treated as homogeneous within the sample. We
will have in mind an experimental arrangement using a pla-
nar sample very thin compared with its lateral dimensions.
Since the characteristic length for inhomogeneity of electric
field10 �E

2 =4
2�n /� is then typically large compared with
sample thickness, this implies that the electric field may also
be treated as homogeneous throughout,10,12 eliminating the
need to consider Maxwell’s equations explicitly.

In equilibrium, the Gibbs free energy of the system is
given by2

F�		 =
 dr� �2

2mab
�D	�2 +

�2

2mc
��z	�2 − ��Tc

0 − T��	�2

+
�

2
�	�4 , �1�

where Tc
0 is the critical temperature at zero field. Covariant

derivatives employed here preserve local gauge symmetry
and are two dimensional; D�=��+ i e�

� � and D=��2�− i e�

�cA.
Governing the dynamics of the field 	 is the TDGL equa-

tion,

�2�

2mab
D�	 = −

�F

�	�
. �2�

This determines the characteristic relaxation time of the or-
der parameter. Microscopic derivation of TDGL can be
found in Refs. 7 and 15 in which the values of �, �, and �
are studied. In the macroscopic case, these are viewed simply
as parameters of the model. At microscopic scale, disorder is
accounted for by �, the inverse of the diffusion constant; the
relation of � to normal-state conductivity is discussed in Ap-
pendix A.

In standard fashion, E=−��− 1
c ��A while B=��A. Our

set of equations is completed2 by including Ampère’s law,
writing for the total current density,

J0 = � c

4
� � � � � A = �nE + J0. �3�

As we shortly make a rescaling of quantities, we have writ-
ten 0 subscripts here for clarity. The first term is the normal-
state conductivity. The second term can be written using a
Maxwell-type equation relating the vector potential with the
supercurrent,

⊗
H

v(τ)

E(τ)

θA θA

(a) (b)

FIG. 1. Possible vortex lattice configurations. �a� Typical large
angle, plotted for �A=60°; �b� typical small angle, plotted for �A

=30°. In the static case, �A=60° and �A=30° will correspond to the
same energy. The applied magnetic field H is along the −z direction
and electric field E��� along the y direction. �A is the apex angle of
the two defining lattice vectors. The two vectors for the rhombic
vortex lattice are a1= ��2 /� ,0� and a2= ��2 /� /2,�2��, where
�= 1

2 tan �A. The motion of vibrating vortices is indicated by the
horizontal arrow.
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J0 = − i
�e�

2mab
�	�D	 − 	�D	��	 . �4�

This is a gauge-invariant model; we fix the gauge by con-
sidering the explicit vector potential A= �By ,0 ,0� and �
=yE cos ��, corresponding to an alternating transport cur-
rent. Each vortex lattice cell has exactly one fluxon. We do
not assume the electric field and the motion of vortices are in
any particular direction relative to the vortex lattice by way
of rendering visible any anisotropy.

For convenience, we define some rescaled quantities. The
rescaled temperature and magnetic field are t=T /Tc

0 and b
=H /Hc2

0 . Hc2
0 denotes the mean-field upper-critical field, ex-

trapolated from the Tc
0 region down to zero temperature.

In the a-b plane of the crystal we make use of magnetic
length ��. We define ��

2=�2 /b, where �2=�2 /2mab�Tc
0. The

scale on the c axis is �c /�b with �c
2=�2 /2mc�Tc

0. The coor-
dinate anisotropy in z is absorbed into this choice of normal-
ization, as can be seen in Eq. �6�. The order parameter 	 is
scaled by �2b�Tc

0 /�. The time scale is normalized as �s
=���

2 /2. Therefore, frequency is �=��s. Note that � is then
inversely proportional to b. The amplitude of the external
electric field is normalized with E0=2� /e��3� so that e
=E /E0.

After our rescaling the TDGL equation takes the simple
form

L	 −
1

2b
�1 − t�	 + �	�2	 = 0, �5�

where the operator L is defined as

L = D� −
1

2
D2 −

1

2
�z

2. �6�

With our specified vector potential, covariant derivatives are
D�=��+ ivy cos ��, Dx=�x− iy, and Dy =�y. We define v
=eb−3/2 for convenience. The TDGL equation is invariant
under translation in z, thus the dependence of the solution in
the z direction can be decoupled. L is not Hermitian,

L† = − D� −
1

2
D2 −

1

2
�z

2, �7�

where the conjugation is with respect to the usual inner prod-
uct defined below.

We will make extensive use of the eigenfunctions of L
and L† in what follows. The eigenvalue equation

L�n,kx
= �n�n,kx

�8�

defines the set of eigenfunctions of L appropriate for our
analysis; this can be seen in Appendix B. The convention is
that �n=�n� when and only when n=n�. By “following the
sign” in front of the D� in L and switching it in the resulting
�, we can define the “corresponding” eigenfunction �̃ for L†.
Writing these corresponding eigenfunctions as �̃n,kx

, the or-
thonormality ��̃n,kx

,�n�,kx�
�=�nn���kx−kx�� may be chosen, so

long as ��̃n,kx
,�n,kx

��0. Shown in Appendix B, crystal struc-
ture determines linear combinations of these basis elements
with respect to kx; the resulting �n functions are then useful

for expansion purposes below. The inner product is
��̃m ,�n�= ��̃m

� �n�, where the brackets �¯ � denote an integral
over space and time. Shortly we will be dealing with a peri-
odic system and we will normalize such integrations by the
unit-cell volume and the period in time. To define averages
over only time or space alone, we write �¯ �� or �¯ �r, re-
spectively.

B. Solution of TDGL equation

States of the system can be parametrized by �t ,b ,e ,��.
By changing temperature t, a system with some fixed
�b ,e ,�� may experience a normal-superconducting phase
transition as temperature passes below a critical value
t̃c�b ,e ,��. Such a point of transition is also known as a bi-
furcation point.

The material is said to be in the normal phase when 	
vanishes everywhere; otherwise the superconducting phase
obtains, with 	 describing the vortex matter. Because of the
vortices, the resistivity in the superconducting phase need
not be zero. The S-N phase-transition boundary t̃c�b ,e ,��
separates the two phases. To study the condensate, we will
use a bifurcation expansion to solve Eq. �5�. We expand 	 in
powers of distance from the phase-transition boundary t̃c.

1. Dynamical phase-transition surface

As in the static case, we can locate the dynamical phase-
transition boundary by means of the linearized TDGL
equation.2,14 This is because the order parameter vanishes at
the phase transition and we do not need to consider the non-
linear term. The linearized TDGL equation is written as

L	 −
1

2b
�1 − t�	 = 0. �9�

Of the eigenvalues of L, only the smallest one �0, corre-
sponding to the highest superconducting temperature t̃c, has
physical meaning. The S-N phase transition occurs when the
trajectory in parameter space intersects with the surface,

�0 −
1

2b
�1 − t� = 0, �10�

where the lowest eigenvalue is calculated in Appendix B,

�0 =
1

2
+

v2

4�1 + �2�
. �11�

Utilizing a b-independent frequency �=b� and amplitude e
of input signal, we write

1 − t − b =
e2/2

b2 + �2 . �12�

In the absence of external driving field, e=0, the phase-
transition surface coincides with the well-known static-
phase-transition line 1− t−b=0 in the mean-field approach.
With time-independent electric field at �=0, where the vor-
tex lattice is driven by a fixed direction of current flow, the
dynamical phase-transition surface coincides with that pro-
posed in Ref. 10, but with a factor of 1/2. This amplitude
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difference is familiar from elementary comparisons of dc and
ac circuits.

In the above equation, we can see that in the static case
e=0, the superconducting region is 1− t−b�0. In addition
when e�0, the superconducting region in the b-t plane is
smaller than the corresponding region in the static case, as
can be seen in Fig. 2�a�.

Finally, increasing frequency will increase the size of the
superconducting region, as in Fig. 2�b�; in the high-
frequency limit, the area will reach its maximum, which is
the superconducting area from the static case. As with any
damped system, response is diminished at higher frequen-
cies.

The superconducting state does not survive at small mag-
netic field; for example, at e=0.2 in Fig. 2�a�, the material is
in the normal state over most of the H-T phase diagram.
Later in this paper we will consider interpretation of this
phenomenon. In particular, when discussing energy dissipa-
tion in Sec. III C, we will see that the main contribution to
the dissipation is via the center of the vortex core. At small
magnetic field, since there are fewer cores to dissipate the
work done by the electric field, the superconducting state is
destroyed and the order parameter vanishes.

2. Perturbative expansion

That the vortex matter dominates the physical properties
of the system is especially pronounced in the pinning-free

flux-flow region. Here we solve Eq. �5� by a bifurcation
expansion.12,16 Since the amplitude of the solution grows
when the system departs from the phase-transition surface
where 	=0, we can define a distance from this surface as

� =
1

2b
�1 − t� − �0 �13�

and expand 	 in �. The TDGL in terms of � is

Ł	 − �	 + 	�	�2 = 0, �14�

where Ł=L−�0 is the operator L shifted by its smallest ei-
genvalue. 	 is then written as

	 = �
i=0

�

�i+1/2��i� �15�

and it is convenient to expand ��i� in terms of our eigenfunc-
tions of Ł,

��i� = �
n=0

�

cn
�i��n. �16�

In principle, all coefficients cn
�i� in Eq. �15� can be ob-

tained by using the orthogonal properties of the basis, which
are explained in Appendix B. Inserting 	 from Eq. �15� into
TDGL Eq. �14�, and collecting terms with the same order of
�, we find that for i=0,

Ł��0� = 0 �17�

and for i=1,

Ł��1� − ��0� + ��0����0��2 = 0. �18�

For i=2,

Ł��2� − ��1� + c�0�2�2��1���0�2 + ��1���0
2� = 0 �19�

and so on.
Observing Eq. �17�, the solution for the equation is

��0� = c0
�0��0, �20�

where �0 is a particular linear combination of all eigenfunc-
tions with the smallest eigenvalue.

The coefficient of �1/2 can be obtained by calculating the
inner product of �̃0 with Eq. �18�,

c0
�0� =

1
��0

. �21�

In the same way, the coefficient of the next order �3/2, can be
obtained by finding the inner product of �̃0 with the i=2 Eq.
�19�,

c0
�1� =

1

2�0
�
n=1

�

�2cn
�1���̃0,�n��0�2� + cn

�1����̃0,�n
��0

2�� . �22�

The inner product of �̃m with Eq. �18� gives the coefficient
for m�0,

�a�

0.2

0.1

e�0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b

t

�b�

�

1

Ν�0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

e

t

FIG. 2. Dynamical superconducting-normal phase transition. �a�
Critical temperature t̃c as a function of b for various e at �=0.1 and
�b� t̃c as a function of e for various � at b=0.1. The straight line in
�a� is the e=0 curve and corresponds to the mean-field phase-
transition line 1− t−b=0. States above each line are normal phase
while the region below each line is superconducting. e suppresses
the superconducting phase as shown in �a� while � removes this
suppression effect, as shown in �b�.
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cm
�1� = −

�m/�0

�m − �0
�23�

and

�m � ��̃m,�0��0�2� . �24�

The solution of TDGL is then

	 = �1/2 �0

��0

+ �3/2�
n=0

�

cn
�1��n + O��5/2� . �25�

In this paper we will restrict our discussion to the region
near t̃c where the next-order correction can be disregarded,

	 �� �

�0
�0. �26�

We would like to emphasize that our discussion at this
order is valid in the vicinity of the phase-transition boundary
and, in particular, for a superconducting system without vor-
tex pinning. In such a system, vortices move in a viscous
way, resulting in flux-flow resistivity; no divergence of con-
ductivity is expected. Our results based on Eq. �26� were
calculated at �1/2 order, where only the lowest eigenvalue n
=0 of the TDGL operator L makes an appearance.

The next-order correction is at order �3/2 and there is now
a contribution from higher Landau levels. From the symme-
try argument in Refs. 16 and 17, as long as the hexagonal
lattice remains the stable configuration for the system, the
next-order contribution comes from the sixth Landau level
with a factor ��6−�0�−1. Even in the putative case of a lattice
deformed slightly away from a hexagonal configuration, the
next contributing term is n=2, since in our system the lattice
will remain rhombic.

C. Vortex-lattice solution

The vortex lattice has been experimentally observed since
the 1960s and its long-range correlations have been clearly
observed18 with dislocation fraction of the order 10−5. Re-
markably, the same techniques can be used to study the
structure and orientation of moving vortex lattice with steady
current,19 and with alternating current in the small-frequency

regime.3 In this section, we will discuss the configuration of
the vortex lattice in the presence of alternating transport cur-
rent in the long-time limit.

In the dynamical case, the presence of an electric field
breaks the rotational symmetry of an effectively isotropic
system to the discrete symmetry y→−y. In contrast, a rhom-
bic lattice preserves at least a symmetry of this kind along
two axes, and the special case of a hexagonal lattice pre-
serves sixfold symmetry.

The area of a vortex cell is determined by the quantized
flux in the vortex, which is 2 in terms of our rescaled
variables. As shown in Fig. 1, we choose a unit cell C de-
fined by two elementary vectors a1 and a2. We will first
construct a solution for an arbitrary rhombic lattice param-
etrized by an apex angle �A.

Consideration of translational symmetry in the x direction
leads to the discrete parameter kl=2l /a1=�2�l. In Ap-
pendix B we show that in the long-time limit the lowest-
eigenvalue steady-state eigenfunctions of L must therefore
combine to form

�0 = �4 2� �
l=−�

�

ei�/2�l�l−1�eikl�x−v sin ��/��ukl
�y,�� . �27�

Here �0 is normalized as

��̃0,�0� � 1.

The function u is given by

ukl
�y,�� = c���e−�1/2��y − kl + iṽ cos��� − ��	2

�28�

with

c��� = e−�ṽ2/4��sin2 �+cos 2���−��+�1/2��sin 2���−��	. �29�

In analogy with a forced vibrating system in mechanics, a
phase �=tan−1 � and a reduced velocity ṽ=v cos � have
been introduced for convenience in Eq. �29�. The zero
electric-field limit, large-frequency limit and zero-frequency
limit are consistent with previous studies concluded in Ap-
pendix B.

In our approximation, the �0 in Eq. �26� is a time-
independent quantity from Eq. �24� and

�0 =
��

2



0

2

d�����e�v�
2 /4��1+cos 2��+��−1/��sin 2��� �

p=−�

�

e−�1/2��kp − iv� cos ���2 �
q=−�

�

�− �pqe−��1/2��kq − iv� cos ���2� , �30�

where v�=v / �1+�2�.
In the small signal limit v→0, �0 reduces to the Abrikosov constant. The Abrikosov constant with either �A=30° or 60°

minimizes the GL free energy Eq. �1� in the static state.16 To be more explicit, �0 can be expanded in terms of the amplitude
of input signal. In powers of v,
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�0

�A
= 1 +

1

2
v�

2�3

2
−

�b

�A
� + O�v3� �31�

and we find it convenient to write in terms of v�. The first
term in �0 is the Abrikosov constant,

�A = �� �
p,q=−�

�

�− �pqe−�1/2��kp
2+kq

2�. �32�

The next term in �0 is v�
2 with a coefficient

�b =
��

2 �
p,q=−�

�

�− �pq�kp
2 + kq

2�e−�1/2��kp
2+kq

2�. �33�

We see that at high frequency, the correction in higher-order
terms of v� can be disregarded.

For hexagonal lattices �A=2�b�1.159, whereas for a
square lattice �A=2�b�1.180. The dependence of �0 on �A
can be seen in Fig. 3, where is plotted the quantity ��0
=�0��A�−�0�30°�. For given a � and v, �0 as function of �A
has two minima; the larger angle corresponds to the global
minimum. As discussed in Eq. �31�, in the high-� limit, the
two local minima become degenerate as in the static case.

III. RESPONSE

In this section we discuss the current distribution and mo-
tion of vortices, energy transformation of the work done on
the system into heat, nonlinear response, and finally the Hall
effect.

A. Motion of vortices

In addition to the conventional conductivity attributable to
the normal state, there is an overwhelming contribution due
to the superconducting condensate in the flux-flow regime,
tempered only by the dissipative properties of the vortex
matter. In this section we will examine the supercurrent den-
sity to investigate the motion of the vortex lattice. We con-
sider a hexagonal lattice in a fully dissipative system; the

nondissipative part known as the Hall effect will be dis-
cussed in Sec. III E.

The supercurrent density J�r ,�� is obtained by substitu-
tion of the solution �26� into Eq. �4�,

Jx =
�

�0
�

p,q=−�

� � kp + kq

2
− y�gp,q�r,�� �34�

and

Jy =
�

�0
�

p,q=−�

� � i�kp − kq�
2

− ṽ cos��� − ���gp,q, �35�

where

gp,q = e−i�/2��p2−q2−p+q�ei�kq−kp��x−�v/��sin ��	ukp

� ukq

and u is given in Eq. �28�. Observing Fig. 4, we conceptually
split the current into two components. One part is the circu-
lating current surrounding the moving vortex core as in the
static case; we refer to this component as the diamagnetic
current. The other part which we term the transport current
is the component which forces vortices into motion. We may
say that the circular current is the current which contributes
to the curl of the current field with the remainder being the
transport current.

The diamagnetic current may be excised from our consid-
eration by integrating the current density over the unit cell C;
that is, we consider �J�r. We have �Jx�r=0 and

�Jy�r = −
�

�0
ṽ cos��� − ��e−�ṽ2/4��sin 2���−��+�v�

2 /2�. �36�

With our conventions, the transport current is along the y
direction. Considering the Lorentz force between the mag-
netic flux in the vortices and the transport current, we expect
the force on the vortex lattice to be perpendicular.

We identify the locations of vortex cores to be where
�	�2=0. The velocity of the vortex cores turns out to be
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FIG. 3. Minima of �0 can be seen for different values of � at
v=1.

�a�

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3 �b�

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

FIG. 4. Current flow at v=1 and �=1. �a� t=0; vortex cores
move to the right. �b� t=4 /5; vortex cores move to the left. Vor-
tices are drawn back and forth as the direction of the transport
current density alternates. The magnitude of the current density has
maximal regions which tend to circumscribe the cores; the maxima
in these regions move in the plane and their manner of motion can
be described as leading the motion of the vortices by a small phase.
The average current in a unit cell leads the motion of the vortex in
time by a phase of  /2.
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vc��� = ṽ cos��� − �� �37�

along the x direction. Note that vortex lattice moves coher-
ently. The vortex motion the electric field with a phase �
which increases with frequency and reaches  /2 asymptoti-
cally. The maximum velocity of vortex motion ṽ decreases
with increasing frequency.

In Fig. 4 we show the current distribution and the result-
ant oscillation of vortices. As anticipated, the transport cur-
rent and the motion of vortices, Eq. �37�, are perpendicular
as the vortices follow the input signal. The current density
diminishes near the core; it is small there compared to its
average value.

In steady-state motion, since the vortices move coherently
in our approximation, the interaction force between vortices
is balanced as in the static case. Since the system is entirely
dissipative, the motion that the vortices collectively undergo
is viscous flow. The vortex lattice responds to the Lorentz
driving force as a damped oscillator and this is the origin of
the frequency-dependent response.

B. Configuration of moving vortex lattice

In static case the system is described by the GL equation.
Solving this equation, which is Eq. �2� but with zero on the
left-hand side, will select some lattice configuration. The glo-
bal minima of the free energy correspond to a hexagonal
lattice while there may be other configurations producing
local minima. In the static case the lattice configuration can
be determined in practice by building an Ansatz from the
linearized GL solution16 and then using a variational proce-
dure to minimize the full free energy.

In the dynamic case, there is no free energy to minimize;
we must embrace another method of making a physical pre-
diction regarding the vortex lattice configuration. Let us fol-
low Ref. 12 and take as the preferred structure the one with
highest heat-generation rate. Though we have at present no
precise derivation, our physical justification of this prescrip-
tion is that the system driven out of equilibrium can reach
steady state and stay in condensate only if the system can
efficiently dissipate the work done by the driving force.
Therefore, whatever the cause, the lattice structure most con-
ducive to the maintenance of the superconducting state will
correspond to the maximal heat-generation rate.

The heat-generating rate14 is

�Q̇�r = 2��D���2�r =
�

�0

ṽ2

2
e�ṽ2/2�cos2 �−�ṽ2/4��sin 2���−��

��cos 2��� − �� + 1 +
ṽ2

8
�cos 4��� − �� + 1	 .

�38�

�0 is given explicitly in Eq. �30� and is the only parameter
involving the apex angle �A of the moving vortex lattice.
Here �0 plays the same role as the Abrikosov constant �A in
the static case. Corresponding to a maximal heat-generation
rate, the preferred structure can be found by minimizing �0
with respect to �A. That the vortex matter moves coherently
is again reflected in the time independence of �0.

The minima of Eq. �30� can be seen in Fig. 3. They are
such that the moving lattice is distorted away from hexago-
nal by the external electric field but this influence subsides at
high frequency. While near the high-frequency limit there
remain two local minima for �0, the one near �A=60° is
favored slightly over that at 30°, as the global minimum. The
two minima tend to approach each other slightly as the fre-
quency decreases.

In an experimental setting, this provides an avenue for
testing the empirical validity of the maximal heat generation
prescription, in particular, in terms of the direction of lattice
movement.20 We put forth the physical interpretation that at
high frequency the friction force becomes less important and
the distortion is lessened. Since interactions dominate the
lattice structure, the system at high frequency will have
many similarities with the static case.

C. Energy dissipation in superconducting state

Energy supplied by the applied alternating current is ab-
sorbed and dissipated by the vortex matter and the heat gen-
eration does not necessarily occur when and where the en-
ergy is first supplied. In Fig. 5, we show an example of this
transportation of energy by the condensate. On the left is
shown a contour plot of the work �P��= �J ·v�� done by the
input signal; points along a given contour are of equal power
absorption. On the right of Fig. 5 is shown the heat-

generating rate,14 �Q̇��=2��D���2��. The periodic maximal re-
gions are near the vortex cores in both patterns.

In Fig. 5�b�, one can see that the system dissipates energy
via vortex cores. From a microscopic point of view, Cooper
pairs break into quasiparticles inside the core; these couple to
the crystal lattice through phonons and impurities to transfer
heat. The interaction between vortices and excitation of vor-
tex cores manifests as friction.7

The power loss of the system averaged over time and

space is �P�= �Q̇�,

�P� =
�

�0

ṽ2

2
e�v�

2 /2��I0� ṽ2

4�
� + �I1� ṽ2

4�
�� , �39�

where In is a Bessel function of the first kind. In Fig. 6 is
shown the power loss and also � as a function of frequency.

�a�

�

� �

�b�

�

� �

FIG. 5. Work contours of superconducting component at v=1

and �=1. �a� Work �P�� and �b� heat-generating rate �Q̇��. The
vortex cores are denoted by “+” in both figures, shown in the x-y
plane. The maximum displacements of vortex cores are shown by
the arrow. The maximal region around the core in �a� is elongated
by the current. The similar horizontal broadening around the core in
�b� is caused by the vortex motion. Energy is transported; maxima
in �a� and �b� do not coincide.
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� is proportional the density of Cooper pairs and can be
thought of as an indication of how robust is the supercon-
ductivity.

As frequency increases, while � tends to an asymptotic
value, �P� achieves a maximum and then decreases. We note
that since this is a fully dissipative system the maximum in
each response curve should not be considered a resonance
phenomenon and cannot be associated with an effective vor-
tex mass.

A parallel may be drawn between what we have observed
in this section and the suppression of the superconductivity
by macroscopic thermal fluctuations commonly observed in
high-temperature superconductors. In our case, the vortices
in a low-Tc superconductor undergo oscillation due to the
driving force of the external field. We may think of this as
being analogous to the fluctuations of vortices due to thermal
effects alone in a high-Tc superconductor. Although the
method of excitation is different, the external electromag-
netic perturbation in the present case essentially plays the
same role as the thermal fluctuations in high-Tc situation.

Finally, we point out that � seems to be an appropriate
parameter for determining the amount of power loss. Generi-
cally, it seems that the power loss due to the dissipative
effects of the vortex matter is diminished as the system is
brought deeper inside the superconducting region of the
phase diagram; that is at large � compared with its saturation
value at high �. We suggest the possibility that this effect,
which is naïvely intuitive, is in fact physical and more
widely applicable than merely the present model.

D. Generation of higher harmonics

The practical application of superconducting materials is
dependent on how well one can control the inherent nonlin-
ear behavior. In this section we will focus on the generation
of higher harmonics in the mixed state, in response to a
single-frequency input signal.

The periodic transport current �J�r is an odd function of
input signal and it turns out that the response motion also
contains only odd harmonics. From Eq. �36� we can calculate
the Fourier expansion for transport current,

�J�r = v Re��
n=0

�

��2n+1�ei�2n+1���� , �40�

where the Fourier coefficient ��2n+1� is

��2n+1� =
�e�1/2�v�

2
in

�0
�1 + �2�iIn+1� ṽ2

4�
� + In� ṽ2

4�
��e−i�2n+1��.

�41�

We see the response goes beyond simple ohmic behavior and
the coefficients are proportional to �. Experimentally, one
way of measuring these coefficients is a lock-in technique21

which is adept at extracting a signal with a known wave from
even an extremely noisy environment.

To make contact with more standard parameters and sat-
isfy our intuition, we expand the first two harmonics in terms
of v. The fundamental harmonic, ��1� expanded in powers of
v2 is

��1� =
ah

�A�1 − i��
−

ah

4�A�1 − i��
v2

1 + �2

��1 − �B/�A

1 + �2 +
1

ah
+

i

2�
� + O�v4� , �42�

where ah= �1− t−b� /2b. The first term in Eq. �42� is the stan-
dard ohmic conductivity which we denote by �0

�1� and is
reminiscent of Drude conductivity for free charged particles.
This is not an unexpected parallel since the Cooper pairs in a
superconducting system can be imagined to behave like a
free-particle gas. Taking this viewpoint, in the small-signal
limit, the ratio Im � /Re �=�=��s gives the relaxation time
of the charged particles. Subsequent higher-order corrections
all contain � in such a way that their contributions are sup-
pressed at large �. The coefficient of the n=1 harmonic ex-
panded in powers of v2 is

��3� =
ah

8�A

v2/�
��3 − �2� − i�3�2 − 1�

+ O�v4� , �43�

which decreases quickly with increasing �.
In Fig. 7, we show the generation of higher harmonics for

three different states in the dynamical phase diagram. For
each harmonic labeled by n, ���2n+1�� as a function of � has
the same onset as �. We can see that ���2n+1�� reaches a maxi-
mum and then starts to decay while � saturates. The coeffi-
cients of harmonics with n�0 decay to zero in the high-�
limit, where the state is well inside the superconducting re-
gion.

We pointed out in Sec. III C and reaffirm here that � plays
a significant role in determining the extent of nonlinearity in
the system. In turn, the parameter which controls this is �.
When � is large, � is brought closer to its saturation value
��, causing the higher harmonics to be suppressed, and also
lessening distortion of the vortex lattice. Finally, for a given
harmonic, ���2n+1�� is generally smaller when �� is smaller;
this can be seen by comparing �a� and �c� of Fig. 7. One
might point out that the nonlinear behavior is decreased at,

0

0.002

0.004

0.006

0.008

0.01
b, e at t=0.2

0.3, 0.5
0.5, 0.5
0.3, 0.7

0

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

〈P
〉

ε

ν

FIG. 6. Power loss of supercurrent �J ·e� �upper panel� and
expansion parameter � �lower panel� as a function of frequency �.

F. PEI-JEN LIN AND PETER MATLOCK PHYSICAL REVIEW B 82, 024516 �2010�

024516-8



for example, large �. Nevertheless, we view the parameter
� /�� as more intrinsic to the system, rather than simply char-
acterizing the input signal.

A limited parallel can be drawn between the effect of
thermal noise in high-Tc superconducting systems and the
effect of the electromagnetic perturbation in our present case.
It seems that in either case the fluctuation influence can be
reduced by adjusting the parameters to describe a state
deeper inside the superconducting region of the phase dia-
gram.

E. Flux-flow Hall effect

In contrast to the fully dissipative system we have consid-
ered, in this section we will discuss an effect caused by the
nondissipative component, namely, the Hall effect. In a clean
system, vortices move without dissipation; a transverse elec-
tric field with respect to current appears. The nondissipative
part is subject to a Gross-Pitaevskii description, using a type
of nonlinear Schrödinger equation,7 with a nondissipative
part to the relaxation � from Eq. �2�. The fully dissipative
operator L in our previous discussion can be generalized by
using a complex relaxation coefficient r=1+ i�. We thus de-
fine

L = rD� −
1

2
�Dx

2 + �y
2 + �z

2� . �44�

The ratio �=Im � /Re � is typically on the order of 10−3 for
a conventional superconductor and 10−2 for a high-Tc
superconductor.7

The Hall effect is small here. In normal metals, the non-
dissipative part gives the cyclotron frequency. If �e is the
relaxation time of a free electron in a dirty metal, then for
typical values of �c�e�1 the Hall effect becomes negligible.
Because the supply of conducting electrons is limited, the
transverse component increases at the expense of the longi-
tudinal component as the mean-free path of excitations
grows. It is equivalent to an increase in the imaginary part of
the relaxation constant at the expense of the real part.

The eigenvalues and eigenfunctions of L can be obtained
easily by replacing the v in previous results with rv, � with
r� and � with � /r. The transport current along the x direction
is no longer zero in the presence of the nondissipative com-
ponent; it is proportional to �. The frequency-dependent Hall
conductivity can be obtained from the first-order expansion
in v,

�0
h�1� =

ah

�A

�

�1 − i��2 − �2�2 �45�

while the Hall contribution in the y direction is expected to
be negligible, as it is on the order of �2.

In principle, the crossover between nondissipative sys-
tems and dissipative systems can be tuned using the ratio �.
In a nondissipative system, which is the clean limit, the Hall
effect is important and taking account of the imaginary part
of TDGL is necessary. On the contrary, in a strong dissipa-
tive system where excitations are in thermal equilibrium via
scattering, the purely real TDGL equation gives satisfactory
agreement.

IV. EXPERIMENTAL COMPARISON

Far-infrared spectroscopy can be performed using mono-
chromatic radiation which is pulsed at a high rate, known as
fast far-infrared spectroscopy. This technique sports the ad-
vantage of avoiding overheating in the system, making it a
very effective tool in observing the dynamical response of
vortices. In particular, one can study the imaginary part of
conductivity contributed mainly from superconducting com-
ponent.

In Fig. 8 is shown a comparison with an NbN experiment
measuring the imaginary part of conductivity. The sample
has the gap energy 2�=5.3 meV. The resulting value of
2� /Tc is larger than the value expected from BCS theory.22

We consider frequency-dependent conductivity in the case of
linearly polarized incident light with a uniform magnetic
field along the z axis.
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The theoretical conductivity contains both a supercon-
ducting and a normal contribution. The total conductivity is
obtained from the total current as in Eq. �3� where the
normal-part conductivity in the condensate is the conductiv-
ity appearing in the Drude model.

According to our previous discussion, the nonlinear effect
of the input signal on NbN is unimportant in the terahertz
region, which corresponds to ��17. An approximation
where the flux-flow conductivity includes only the term �0

�1�

from Eq. �42�, and Hall coefficient �0
h�1� from Eq. �45� is

shown in Fig. 8 and the agreement with experiment is good.
The naive way in which we have treated the normal-part

contribution is essentially inapplicable to the real-part con-
ductivity. This is because the real-part conductivity contains
information about interactions with the quasiparticles inside
the core, making further consideration necessary.23

V. CONCLUSION

The time-dependent Ginzburg-Landau equation has been
solved analytically to study the dynamical response of the
free vortex lattice. Based on the bifurcation method, which
involves an expansion in the distance to the phase transition
boundary, we obtained a perturbative solution to all orders.
We studied the response of the vortex lattice in the flux-flow
region just below the phase transition, at first order in this
expansion. We have seen that there are certain parameters
which can be tuned using the applied field and temperature,
providing a feasible superconducting system where one can
study precise control of nonlinear phenomena in vortex mat-
ter.

Under a perturbation by electromagnetic waves, the
steady-state solution shows that there is a diamagnetic cur-
rent circulating the vortex core, and a transport current par-
allel to the external electric field with a frequency-dependent
phase shift and amplitude. Vortices move perpendicularly to
the transport current and coherently.

Using a technique of maximizing the heat-generation rate,
we showed that the preferred structure based on energy dis-
sipation is a hexagonal lattice, with a certain level of distor-
tion appearing as the signal is increased or the frequency is
lowered. We have written transport current beyond a simple
linear expression. A comparison between different harmonics
of three different states in our four-dimensional parameter
space indicated that the nonlinearity becomes unimportant at
high frequency and small amplitude, and the response to the
input signal is decreased when the system moves deeper in-
side the superconducting region, away from the phase-
transition boundary.

To observe the configuration of moving vortices, tech-
niques such as muon-spin rotation,3,19 small-angle neutron
scatterings,3 scanning tunnel microscope,24 and others25

seem to be promising options. To provide the kind of input
signal considered here, methods such as short-pulse FIR
spectroscopy as used in Ref. 22 might be applied. The coef-
ficient we defined in Eq. �41� corresponds to conductivity.
We have also seen that a simple parametrization by complex
quantities such as conductivity and surface impedance is in-
sufficient to capture the detailed behavior of the system; in
performing experiments, it should be kept in mind that the
nonlinearity can be measured in terms of more appropriate
variables as we have shown.

We have viewed the forcing of the system by the applied
field to be somewhat analogous to thermal fluctuations, in
the sense that they both result in vibration of the vortex
lattice. Hence, the response of the vortex lattice to the elec-
tromagnetic fluctuation is stronger at the nucleation region of
superconductivity than deep inside the superconducting
phase. Besides, since at high frequency the motion of vorti-
ces is limited, the influence from electric field is suppressed,
as is the Hall effect.
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APPENDIX A: TDGL PARAMETERS

We follow Ref. 7 to estimate the coefficient � which char-
acterizes the relaxation process of the order parameter. � is
the inverse of the diffusion coefficient for electrons in the
normal state. For a strongly scattering system, as in the dirty
limit,7 the ratio between the relaxation times of order param-
eter

�� =
�2�

2mab
� ��Tc

0�1 − t��
�A1�

and the vector potential �or current�

� j =
��n2mab

�

8e2��Tc
0�1 − t��

�A2�

is
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FIG. 8. Experimental comparison of imaginary part of conduc-
tivity at high frequency. The NbN experimental data are from Fig.
6�b� of Ref. 22. Material parameters Tc

0=15.3 K and Hc2
0 =14.1 T

calculated using Fig. 3�b� of Ref. 22. Normal-state conductivity is
�n=20�104 ��� cm�−1 and relaxation time of an electron �e

=5 fs are taken from Ref. 22. The theoretical curve has one fitting
parameter �=44.5.
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��

� j
=

4

14��3�
. �A3�

By definition of the thermal critical field Hc and Hc2
=�2�Hc, as in Ref. 2, we know the ratio of the two param-
eters is

��Tc
0�2

�
=

�Hc2
0 �2

82�2 . �A4�

The coherence length at zero temperature can be written in
terms of Hc2

0 as �2=�0 /2Hc2
0 and in terms of effective mass

as �2=�2 /2m��Tc
0. As a result,

� =
25�2�n

7��3�c2 . �A5�

With �, we can retrieve the experimental quantities from the
rescaled ones used in calculation. Using the 0-subscripted
original variables, we write the electric field E
= �2� /e��3��e, and the frequency �= �2 /��2��. The current
density J0= �cH3/2 /�8�0�2�J. In the case of linear re-
sponse, we have J0=�0E, where �0= �c2� /4�2��.

APPENDIX B: SOLVING THE LINEARIZED TDGL
EQUATION

We consider the linearized time-dependent Ginzburg-
Landau Eq. �9�, which has been written in our chosen gauge.
We wish to find the set of eigenfunctions of L corresponding
to the lowest eigenvalue. Based on knowledge of the solution
in the static case, we solve the now time-dependent problem
by making the following Ansatz.26,27 The electric field along
the y direction breaks rotational symmetry in the x-y plane,
so we write

f�x,y,z,�� = eikzzeikxxeg2���y2+g1���y+g0���. �B1�

After substitution of f for � in Eq. �9�, comparison of
coefficients of powers of y gives the following differential
equations in �,

ġ2 +
1

2
− 2g2

2 = 0, �B2�

ġ1 + iv cos �� − kx − 2g2g1 = 0, �B3�

ġ0 +
1

2
�kx

2 + kz
2� −

1

2
g1

2 − g2 = � . �B4�

The solutions are

g2 = −
1

2
tanh�c2 + �	 . �B5�

For a steady-state solution, �→�, we have g2=− 1
2 ,

g1 = c2e−� + kx − iṽ cos��� − �� . �B6�

As with g1, we have here c2=0,

g0 = − ikx
ṽ
�

sin��� − �� −
ṽ2

8�
sin 2��� − �� + c0, �B7�

where c0 is a normalization constant.
The resulting eigenvalue is

� =
kz

2

2
+

1

2
+

v2

4�1 + �2�
. �B8�

Now, although in a more realistic treatment of the system,
one may introduce some boundary condition restricting kz to
a certain set of values, here we simply select the smallest
eigenvalue �0 available to us by setting kz to zero. Thus
equipped with the set of eigenfunctions corresponding to our
lowest eigenvalue, we deem them to be the first elements of
our basis, labeled by n=0 and kx. These eigenfunctions of L
are

�0,kx
�x,y,z,�� = eikx�x−v sin ��/��ũkx

�y,�� �B9�

with

ukx
�y,�� = c���e−�1/2��y − kx + iṽ cos��� − ��	2

�B10�

and

c��� = e−�ṽ2/4��sin2 �+cos 2���−��+�1/2��sin 2���−��	. �B11�

In the same way, the corresponding eigenfunctions of L†

can be obtained,

�̃0,kx
�x,y,z,�� = eikx�x−v sin ��/��ũkx

�y,�� �B12�

with

ũkx
�y,�� = c̃���e−�1/2��y − kx − iṽ cos��� + ��	2

, �B13�

where

c̃��� = e−�ṽ2/4��sin2 �+cos 2���+��−��1/2��sin 2���+��	� �B14�

according to our normalization condition �28�. The lowest
eigenvalue of L† is �̃0=�0.

In the �→0 limit, the system reduces to the case of con-
stant electric field. The eigenfunctions and eigenvalues are
then consistent with those obtained by Hu and Thomson.10 In
the limit of zero electric field, the eigenfunctions and eigen-
values reduce to those of the lowest Landau-level static-state
solution.2 This is also the same in the �→� limit.
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